generic type Real is digits <>; package Ada.Numerics.Generic_Complex_Types is pragma Pure(Generic_Complex_Types);
type Complex is
record
Re, Im : Real'Base;
end record;
type Imaginary is private;
i : constant Imaginary; j : constant Imaginary;
function Re (X : Complex) return Real'Base; function Im (X : Complex) return Real'Base; function Im (X : Imaginary) return Real'Base;
procedure Set_Re (X : in out Complex;
Re : in Real'Base);
procedure Set_Im (X : in out Complex;
Im : in Real'Base);
procedure Set_Im (X : out Imaginary;
Im : in Real'Base);
function Compose_From_Cartesian (Re, Im : Real'Base)
return Complex;
function Compose_From_Cartesian (Re : Real'Base)
return Complex;
function Compose_From_Cartesian (Im : Imaginary)
return Complex;
function Modulus (X : Complex) return Real'Base;
function "abs" (Right : Complex) return Real'Base
renames Modulus;
function Argument (X : Complex) return Real'Base;
function Argument (X : Complex;
Cycle : Real'Base) return Real'Base;
function Compose_From_Polar
(Modulus, Argument : Real'Base)
return Complex;
function Compose_From_Polar
(Modulus, Argument, Cycle : Real'Base)
return Complex;
function "+" (Right : Complex) return Complex; function "-" (Right : Complex) return Complex; function Conjugate (X : Complex) return Complex;
function "+" (Left, Right : Complex) return Complex; function "-" (Left, Right : Complex) return Complex; function "*" (Left, Right : Complex) return Complex; function "/" (Left, Right : Complex) return Complex;
function "**" (Left : Complex; Right : Integer) return Complex;
function "+" (Right : Imaginary) return Imaginary;
function "-" (Right : Imaginary) return Imaginary;
function Conjugate (X : Imaginary) return Imaginary
renames "-";
function "abs" (Right : Imaginary) return Real'Base;
function "+" (Left, Right : Imaginary) return Imaginary; function "-" (Left, Right : Imaginary) return Imaginary; function "*" (Left, Right : Imaginary) return Real'Base; function "/" (Left, Right : Imaginary) return Real'Base;
function "**" (Left : Imaginary; Right : Integer) return Complex;
function "<" (Left, Right : Imaginary) return Boolean; function "<=" (Left, Right : Imaginary) return Boolean; function ">" (Left, Right : Imaginary) return Boolean; function ">=" (Left, Right : Imaginary) return Boolean;
function "+" (Left : Complex;
Right : Real'Base) return Complex;
function "+" (Left : Real'Base;
Right : Complex) return Complex;
function "-" (Left : Complex;
Right : Real'Base) return Complex;
function "-" (Left : Real'Base;
Right : Complex) return Complex;
function "*" (Left : Complex;
Right : Real'Base) return Complex;
function "*" (Left : Real'Base;
Right : Complex) return Complex;
function "/" (Left : Complex;
Right : Real'Base) return Complex;
function "/" (Left : Real'Base;
Right : Complex) return Complex;
function "+" (Left : Complex;
Right : Imaginary) return Complex;
function "+" (Left : Imaginary;
Right : Complex) return Complex;
function "-" (Left : Complex;
Right : Imaginary) return Complex;
function "-" (Left : Imaginary;
Right : Complex) return Complex;
function "*" (Left : Complex;
Right : Imaginary) return Complex;
function "*" (Left : Imaginary;
Right : Complex) return Complex;
function "/" (Left : Complex;
Right : Imaginary) return Complex;
function "/" (Left : Imaginary;
Right : Complex) return Complex;
function "+" (Left : Imaginary;
Right : Real'Base) return Complex;
function "+" (Left : Real'Base;
Right : Imaginary) return Complex;
function "-" (Left : Imaginary;
Right : Real'Base) return Complex;
function "-" (Left : Real'Base;
Right : Imaginary) return Complex;
function "*" (Left : Imaginary;
Right : Real'Base) return Imaginary;
function "*" (Left : Real'Base;
Right : Imaginary) return Imaginary;
function "/" (Left : Imaginary;
Right : Real'Base) return Imaginary;
function "/" (Left : Real'Base;
Right : Imaginary) return Imaginary;
private
type Imaginary is new Real'Base; i : constant Imaginary := 1.0; j : constant Imaginary := 1.0;
end Ada.Numerics.Generic_Complex_Types;
Go to the first, previous, next, last section, table of contents.